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On a gradient-like integro-differential equation

by

Jack K. Hale and Krzysztof P. Rybakowski

Abstract

Let b: [-1,0] -IR be a C 2-function, b(6) > 0, 6 E (-1,01, b(1) - 0,

b'(e) > 0, b"(6) > 0, 6 E [-1,0] and there is a 0  such that b"(e0 ) > 0.__*
Suppose g: R -IR is a Cl-function such that g(s)ds as I

0
and consider the equation

(t) = -f b(O)g(x(t+e))de

Every solution of this equation approaches a zero of g. If the zeros of

g are bounded, there is a maximal compact invariant set Abg of this

equation in C([-1,0I,] R) which is one dimensional and consists only of

the zeros of g and the unstable manifolds of these zeros. If g has

only one zero, then A ,g is a point. If g has no more than three

simple zeros, then the set Abg is simply an arc with the unstable zero

connected to the stable ones. In the class of g which have five simple

zeros, we show that there are five distinct ways that the zeros of g can

be connected by orbits in Ag. Only one of these preserves the order

of the zeros on the realo. This shows clearly the importance of consider-

ing the set Abg and the structure of the flow on this set rather than

just asserting that every solution approaches a zero of g.
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1. Introduction

2_Let b: -1,0] - R be a C -function such that b(e) > 0, e E (-1,01,
b(-l) - 0, b'() > 0, b"(6) > 0 for 8 E [-1,0] and there exists a

6 E [-1,0] such that b"(00) > 0. Suppose g: R *]R is a C -function

and consider the equation f0
(1.1)(b,g) x(t) - b()g(x(t+e))de

For any 0 E C - C([-,01,, R), there is a unique solution x(O)

through 0 at t - 0. If Tf(t): C - C is defined by [Tf(t)0](6) -

x(o)(t--6), then Tf(t), t > 0, is a strongly continuous semigroup on C.

We think of the solution x() of (1.1)(b,g) as defining a curve

{T f(t)o, t > 0} in C and, therefore, can consider the geometric con-

cepts of w-limit sets, a-limit set and invariant set (see [11).

Suppose fO g(s)ds - as 1x1 . It is known (see [1,2]) that

the a-limit set of every solution of (1.1)(b,g) is a zero of g and,

also, the a-limit set of any nonconstant bounded solution of (1.1)(b,g) is an

unstable zero of g. If a is a zero of g then a is hyperbolic if
and only if g'(a) 0 0, uniformly asymptotically stable if g'(a) > 0

and unstable if g'(a) < 0. Furthermore, the unstable manifold W U(a)

of a is one dimensional if a is unstable.

If the set of zeros of g is bounded, then there is a bounded set

B such that every solution eventually enters B, that is, (l.l)(b,g)

is point dissipative. It follows (see (1,21) that there is a maxima]

compact invariant set Abg for (l.l)(b,g) which is uniformly asymptoti-

cally stable and attracts bounded sets of C.
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From the fact that the a-limit set of any nonconstant bounded solution is

an unstable zero of g, it follows that Ag-U{WU(a): g(a) - 0) and

Abg is one dimensional. The purpose of this paper is to discuss in

some detail the structure of the set Ag for a fixed b and a certain

class of g.

1
Let Gk be the class of all C -functions g satisfying the follow-

ing conditions:

1) g(s)ds - as lxi +

2) g has exactly 2k+l zeros aI < a2 < ... < a2k+l all of which

are simple.

Let the topology on Gk be that generated by the seminorms I gi1 '

suP xE(Ig(x)l + Ig'(x)l), where M is a compact set in 1R. For any

g E Gk, all zeros of g are hyperbolic and the zeros a2 j i 1,2,...,

are saddle points with unstable manifolds Wu(a2j) one dimensional. Thus,

for each a2 j , there are exactly two distinct orbits defined for t E (-,-)

whose a-limit sets are a2j. We call these orbits emanating from a2j.

Fix b as above. Let g,g E Gk  have aI < ... < a2k+l and al < ... <  2k+l'

resp., as their zeros. Call g and g equivalent (g ~ g) if for all

i,j E {l,...,2k*l}, there is an orbit x(t) of (l.l)(b,g) emanating from

ai and tending to aj as t if and only if there is an orbit X(t)

of (l.l)(b,g) emanating from a and tending to a as t - c. This

clearly defines an equivalence relation on Gk. We say g E Gk is

--stable if the equivalence class of g is a neighborhood of g in Gk.

It is not difficult to show that g is - stable if the w-limit

set of every orbit in Ab which is not a point is a stable zero of g;
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that is, a point a n odd, 1 < n < 2k+l. Since Abg

attractor and uniformly asymptotically stable, this is equivalent to

saying that g is --stable if the w-limit set of every orbit of

(l.l)(b,g) defined and bounded on (- ,-) is a stable zero of g. If

it were known that the map Tbog(t) is one-to-one on Abg, this latter

statement would be equivalent to the following: there is a neighborhood

V of g such that, for any g E V, there is a homeomorphism of Abg

onto Ab,i which preserves orbits and sense of direction in time; that is,

g is structurally stable when the map Tbog (t) is restricted to A,8'

We have not been able to prove that Tbg(t) is one-to-one on Abg and

this is the reason for taking the weaker definition of equivalence. If

g is analytic, then T bg(t) is one-to-one (see [1]).

The ultimate objective would be to describe the equivalence classes

in Gk ' The cases k = 0,1 are trivial. Suppose k = 2; that is, each

g E G 2 has five zeros aI < a2 < a3 < a4 < a5 with a2,a4 being saddle

points, and al,a 3,a5 being uniformly asymptotically stable. If aj is

an unstable equilibrium point with akiaZ being the corresponding w-limit

sets of the orbits emanating from aj, we designate this by j[k,£]. The

structure of the flow on Abg and the equivalence classes in G2 are

then determined by a pair {2[i,j],41k,k)} expressing the fact that the

unstable manifold through a2 has w-limit set {a ,a ) and the one

through a4 has W-limit set {ak,at}.

Our main result states there are exactly five equivalence classes

in G2; namely {2(1,3],413,5]}, {2[1,4],4[3,51}, {2[1,51,413,51},

{2[1,31,4[2,5]}, {2[l,3],4[l,5]. The only class that preserves the
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natural order of the reals on Abg is {2[1,3),4[3,5]1. The first,

third and fifth cases are --stable. The second and fourth cases have

a connection between the saddle points a2 and a4. It seems plausible

that these cases are not --stable, but no proof is available.

The fact that five equivalence classes can occur indicates clearly

the importance of studying the structure of the flow on Ag rather than

merely asserting that every solution of (l.l)(b,g) approaches a zero

of g.

We have not characterized the equivalence classes in G for k > 3,
be k

but it should be possible to adapt the methods below to this case.

1 i
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2. This section is devoted to the statement and proof of several lemmas.

Lemna 2.1. For every p > 0, K > 0, there is a CO - C0(K,p) > 0 such

that, for all C, 0 < C < Co, and all a, 6, jal < K, s - 21A I >

the solution y(n) of the difference equation

y(n) - y(n-l) - Cy(n-2),. n > 1
(2.1)

y(O) - a + A , y(-1) - a

satisfies sgn y(n) - sgn a for n > -1.

Proof: Let A A (C) be the roots of the characteristic equation

x2 _ X + C - 0. If 0 < C < 1/4, then Xl,X 2  are real, nonnegative and

distinct, say XI(C) < x2 (C). Moreover, X i (C) is continuous in C with

A (0) - 0, A2(0) 1. For the initial data specified in (1.2) and n _ -1,

)y(n) (a(l-A2 ) + A)X 2  + (a(X2-) - n

The remainder of the argument follows easily from the fact that X1(0) - 0,

A 2 (0) 1 and the hypotheses on a,A.

Lemma 2.2. For every p > 0, K > 0, there is an mo - m0 (O,K) such

that, for all 0 < m < m0 and f(x) f mx, the following properties hold:

1) If 0(0) is continuous, positive and nonincreasing on [-1,0],

(-l) _< K and (-l) - 2[*(-i) - *(0)] > p, then the solution x(t) of

(l.l)(b,f) through * satisfies 0 < x(t) < 0(0) for t E (0,-) and

x(t) - 0 as t -- monotonically.

2) If 00) is continuous, negative and nondecreasing on [-1,01,

- (-i) < K and -$(-l) - 2(c(0) - *(-l)) > p, then the solution x(t)

of (l.l)(b,f) through * satisfies *(0) < x(t) < 0 for t E (0,-) and

x(t) * 0 as t - monotonically.



-6-

Proof: Fix P > 0, K > 0 arbitrarily. With CC0  C0 (P,K) as in Lemma
0

2.1, define m0 - C0 /M, M - b(0)d8. Let 0 < m < m0  be arbitrary and

define C - mM. Suppose @ satisfies the hypotheses in 1) and let y(n)

be the solution of (1.2) with a - 4(-l), a + A - b(0). From Lemma 2.1,

y(n) is decreasing, 0 < y(n) < 0(0), n > 1, y(n) -+ 0 as n * . Let

t > 0 be the unique minimal t > 0 such that x(t ) y(n) and setn n -n

t - -1, to  0. To prove the claim 0 < x(t) < 0(0) in 1), it is suff-

icient to show that t - t 2 > I for every n > 1. This inequality

is true for n - 1. Assuming that it holds for some n, we obtain

-Cy(n-2) y(n) - y(n-l) - x(tn ) - x(t n_)

= - ( b(e)mx(s+O)d6)ds
t -i

n-

>-(tn- tn )CX(tn -1)

>-(tn - tn-1l)CX(tn2-1 -(tn-tn )Cy(n-2)

This implies tn - t > 1 and proves 0 < x(t) < (0), t > 0. Thus

x(t) is decreasing for t > 0 and approaches zero as t * . Case 2)

is proved by replacing x by -x.

Lemma 2.3. Let a,a 2 ,m 2  and K be real numbers, a1  a2 , m2 < 0,

K>O. Let I-[a, 2 ]  f - < 2  and I - [a2 ,al]  if a2 < al'

Then there is a mapping f: I -1R, f €C 1(1), If! < K on I, f'(a 2) - 2,

f-{0} - {alVa2}, f is affine in a neihborhood of a and a2  and

there is a function x: -R Int I, x E C (IR), such that lmtc1x(t) all

limt, x(t) - a2, 4 x satisfies (l.l)(b,f).
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Proof: Assume that the lemma is true for a1 < a2  and suppose a2 < a.

Let a C a2, a2  CL- Then a1< a 2. Choose f - fa~

x ft x(a,,a 2*m2) as in the statement of the Lemma. Define f: [a 2 'a] itR,

f~~x1 -- a1 c 2-x an 2~) - x(t). Then it is obvious that

f and x satisfy the Lemma. Hence it is enough to prove the Lemma for

a<a
2*

Let f 2(W - mn2 (x-a 2). Then by the assumptions on b, there is a
A t

unique X 2 > 0 such that x(t) - a 2 - e 2 is a solution of (1.l)(b,f 2 )

on (~,D.Let K -2(a 2-a 1 ), P= (1/3)(a 2-a I). Choose m m 0 (0,K)

as in Lemma 2.2. For 0 < mn < m 0 , f 1(x) . f I(m)(x) -m(x-a I let

Figure 1

k ~m) be the unique coincidence point of f 1anci f2 (c.Fg1)

Let t - t(m) be the unique point such that a2 - e 2 x.~ Define

h hm IR IRso that h -f 1 on (-c,X^], h -f 2 on [;,a2 ) and h is
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arbitrary on (a2 w) but such that h E G1  and the zeros of h are:

01 < L2 < 8 where B is some real number. Fix c > 0 and a such

that a1 < 0 < a2 - E, and (a2-£) - a 1 > 2p + 2(a2-a).

If z(t), t > 0, is the solution of (1.1)(b,h) through (9) -
X2 (t+e) X 2yt

a2 -e , define z(t) = a2 - e for t < t, z(t) = y(t-i) for

t > t. It follows that z(t) solves (1.1)(b,h) on (- ,). Also, It

is clear that there is a unique minimal t' - t'(m) such that z(t') - a.

For m small enough X > a2- C and hence t' > t. Moreover,

z(t') - x - z(t') - z(t) - ( b(e)h(z(s+O))dOds.
t -

Since X > z(t) > a for t E [t,t'], we have 0 < g(z(t)) - m(z(t)-a 1)

for such t, and this implies

IzCt')-4I < M'M<t'- )(x-a1),

where H b(8)dO. Hence,

0 < a2 - e - a < ( - z(t')) f M'm(t'-t)(x-al),

i.e., t'-t * as m - 0. Hence, for all m small enough, and all

t E [t,t+l], a < z(t) < a2* Moreover, taking m smaller, if necessary,

z(t-l) -a 1 - 2(z(t-1) - z(t))

(2.2)
X2 (t-1) A2 (t-l) X2t

=a 2 -e -a 1 - 2(e - e ) > (1/2)(a 2-al).

Fix m < K so that (2.2) is satisfied. For any 6 > 0 let g6 (x)

be a C1-functon such that g6 (x) - h(x) for x ( (^-6,i+6) and



I

-9-

0 < h(x) - g6 (x) < 6 for x EiR. If s' - s'(6) is such that
- 2s  ^ 2(s (6)+e)

a2  - e - X+6 , then s'(6) t as 6 0 . If ¢(8) a2  - A

then 6 as 6 - 0 in C(-I,0],IR). Let y6 (t), t > 0, be the
2t

solution of (l.l(b,g6 ) through 6 and define z6 (t) - a2 - e

t < s'(6), z6 (t) - y6(t-s'(6)), t > s'(6). Then z satisfies (1.1)(b

on ( By continuity, z6 (t) z(t) as 6 - 0, uniformly on com-

pact intervals. Let s" - s"(6) be the smallest number such that

z6 (s"(6)) - X-6. Then s"(6) exists and s"(4) > s'(6). Moreover,

since z(6+l) < x, it follows that s"(6) < s'(6) + 1 for 6 > 0

small enough. Hence, s"(6) - t as 6 - 0. For 6 > 0 small, it follows

that z6 (s"(6)+0) - a1  is positive and nonincreasing. Moreover,

z6(s"(6)-l) - a1 < a - a2 < K. Finally, by (2 .2)and for 6 small enough,

z6(s"(6)-l)- a1 - 2(z 6(s"(6)-l) - z6(s"(6)) > P.

Fixing such a small 6 > 0 and letting f - g, on (al,a2 ], x(t) - z6(t),

we see from Lemma 2.2 that limt-,.x(t) a1,p limt-KOx(t) " a2. This

proves the lemma.

Corollary 2.4. Let a1 < ... < a2k+l be arbitrary real numbers, and,

for every i 1 1,...,k, let m2 1 be any negative number. Let M > 0

be arbitrary. Then there exists a g E Gk, such that g(as) 0 for

i = I,...,2k+l, g'(a 21) - m21 for i - 1,...,k, g is affine on

(-,a,) U (a2k+l,') and in a neighborhood of each a,, Ig(x)1 < M for

x E [al,a 2k+l]. Moreover, for every i - 1,...,k there are solutions

x i(t) and x (t) of (1.1)(b,g) on (- ,) such that a2il < x (t) < a21'
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< xi~t) < t(€ ,xi(+()+=)x21+1

a21 xi t) < a2i+l' tEIR xa 2i1' I  a2 1  X() a2+

:i -= a2i.

We also need some lemmas on approximation of elements in Ck by

analytic functions.

Lemma 2. 5. For every g E Gk and every positive, continuous function

kk:R - R there exists an analytic function h E G k  such that

lg(x) - h(x)l + lg'(x) - h'(x)l < 4(x), x EIR.

Proof: Let a 1< ... < a2k+l be the zeros of g. There are numbers
++

bi, bi, i - 1,... ,2k+l, b < ai < b i  such that g(x) < 0 f'or x < bi,

g(x) > 0 for x > b+l g'(x) 0 for x E [bi,b 1 , and the intervalsg~) frx 2k+li

[b ,b+] are pairwise disjoint.

Let 4: -*IR be a positive, continuous, function such that

(x) < (x) for x EJR, ' is integrable, P(x) < 1g(x)j for

2k+l + 2k+l

x (U (b1,b ), iP(X) < -Ig'(x)I for x E U lb 1,b + . By Whitney's
i-l 1=1

Lemma ([3]), there is an analytic function h:R -"IR such that
1

lg(x) - h(x)J + Jg'(x) - h'(x)J < 4(x) for x EIR.

We will show that h E Gk. If H(x) f h(s)ds, G(x) f g(s)ds, then
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H(x) f g(s)ds + (h(s) - g(s))ds
0 0

> G(x) - flh(s) - g(s)lds
0

> G(x) - f (s)ds > C(x) - J(s)ds 4

as lxi *=.

2k+l
If x f U (bi b) then lg~x)-h(x)j < P(x) -1j 2~ and, hence,

i-i

h(x) # 0. It follows that all zeros of h must be contained in

2k+l 2k+l
U (b ,b +). If x E U [bi,b +], then Ig'(x)-h'Cx)I < Cix) (.l,(~
i-l 

i-i

and, hence, h'(x) 0 0. This means that h has at most one zero in

(b,b+]. Since sign h(b) - sign g(b;) # sign g(b+) = sign h(b+), it

follows that h has exactly one zero in [b1,b I and this zero is

simple. The Lemma is proved.

Lemma 2.6. Let a1 < ... < a n and a < .. < n  be real numbers.

Then there are q,M, 0 < q < M and there is an analytic mapping

a: ]R *m such that a is a diffeomorphism of IR onto IR, q < a'(x) < M

for x EI, a(a ) - i - l,...,n.

Proof: Let f: -m be a C -function such that f'(x) > 0 for x EIR,

f is affine on (-,a U [ano) and f(a " aI) i - l,...,n. Let
y - infxE VW > 0 and vk(x) R I (x-a ), k 1 1,...,n. By a simple

i~k

calculation,

M := n sup {(tanh(vk(ak))) - } + I
k

+ sup sup i(tanh(vk(ak)))- I d(tanhoVk)(x)} < C
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By Whitney's Lemma, there is an analytic function h: R -]R such that

for x E IR,

jh(x) - f(x)I + Jh'(x) - f'(x)l < Y/3M.

If a -h + k, where

n f(ak) - h(ak)

k(x) = I tanh(vk(x)) h
k-l tan h(vk(ak))

then a is analytic,

Ia(x) - f(x)l < Ih(x) - f(x)l + Ik(x)j _ y/3i + y/3.

Hence a(x) - t- as x - ± and a is surjective. Also,

Ia'(x) - f'(x)l < lh'(x) - f'(x)l + Ik'(x)i < y/3i + y/3

which implies sup R Ia'C(x)j < . Furthermore,

< f'(x) - _ < a'(x).3 -3
3M

Thus, q < a'(x) < M, x ECR and a is a diffeomorphism. Finally, lt

is obvious that a(ai) = ai i = l,...,n, and the lemma is proved.

Corollary 2.7. Let g and g be two analytic functions belonging to

Gk Then there is a continuous mapping H: [0,1] -1 Gk , such that

H(0) - g, H(l) - g, and, for every t E [0,1], H(t) is analytic.

Proof: Let a < an  and a < "..<a be the zeros of g and ,

reap. Let a be as in Le-ma 2.6. Define for t E [0,1] and x ERr

LAM

iI
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{ ( (1-2t)x + 2ta(x)) ,If t < 1/2

A (2-2t)j(cz(x)) + (2t-l)g(x), if t > 1/2

It is easy to show that H satisfies all requirements of the Corollary.

-4
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3. The main result.

In this section, we state and prove the main result.

Lemma 3.1. Let g E Gk  and a be an unstable zero of g. lf x(t),

t E (-,-), is a solution of (l.l)(b,g) emanating from a, then either

x(t) > a for all t or x(t) < a for all t.

Lemma 3.1 gives a limitation on the maximal number of equivalence

classes that can occur in G The remainder of the discussion is con-

cerned with k - 2. There are at most five equivalence classes in G2;

namely, those described in the introduction. The main result is

Lemma 3.2. There is an analytic function in each of the equivalence

classes {2[1,5],4[3,51}, (2[1,3],4[1,51} in G2.

Theorem 3.3. There are exactly five equivalence classes in C. Each

equivalence class contains an analytic function.

Proof of Lemma 3.1:

Let V(O) = G(0(O)) + b'()1 g(p(s))dsl2d,

where G(x) = j g(s)ds.

Then the derivative V(4) of V along solutions of (1.1) (b,g) is given

by

(3.1) V() 2 -g((O))d 
2  b"(0)[I g@(s))dsl 2dO

(see [11).
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Since lim x(t) = a, it follows that lim V(xt ) = G(a).

+-CO t+ -X

If the Lemma is not true, there exists a t0 > 0 such that x(td = a. By

(3.1), V(x ) < G(a). Hence I b'(e)[2 g((s))ds]2de < 0, a contradiction

which proves the Lemma.

Proof of Lemma 3.2: We will show that there is a g E G2  representing

class {2[l,5],4[3,51}. Symmetry in the proof to follow implies that

there is a g' E G2 representing class {2[l,3],4(l,5J}. Since these

classes are stable classes, Lemma 2. 5 implies that g and g' can be

chosen analytic, which proves the lerima. Choose aI < a2 arbitrarily.

Define f E C such that f has exactly two zeros, a I and a2 , f is

affine in a neighborhood of a,, a2 and on (- ,aI) U (a2 ,0), f'(a ) > 0,
A~t

f'(a 2) m2 < 0. There is a unique A2 > 0 such that x(t) - a2 + e 2

t E (-,-) is a solution of (l.l)(b,f). Let t0 > 0 be arbitrary and

let y(t), t E [0,1], be defined as
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Figure 2

y(t) - X(t 0  -o Cf b(6)f(x(s+O))dO)ds

Hence, there is a 0 < t1 < 1 such that '(t) > 0 for t E [O,t 1  and,

so, y(t I) > X(t 0). Define f such that f-f on (-w,x(t0 )], f is

1affine on [x(t0 ),y(t I)], i(y(tl)) - 0, and fis affine on [y~t1)~

with negative slope. If 0(0) - x(t0 +0), e E f-1,0], let be the

solution of (l.1)(b,f) through 0, t > 0. Then obviously (t) > y(t)

for t E (0,t1J If we define i(t) - x(t), t < to* ((t) )

t > to, then isatisfies (1.1)(b,i) on Moreover, there is an

' 1 > asuch that is1+)> y(t 1) for e E f-1,01, and i(s 1+8) is

nondecreasing on [-1,01. Now we perturb f a little to obtain a C 1-map



h which coincides with f on [y(t 1),a), and h has four simple zeros,
aI < a2 < a3 < a4, where a3 E (x(t0 ),y(tl)), a4  y(t 1 ) and there is a

solution z(t) of (l.l)(b,h) on (-w,c) such that z(t) - a2 as t - -

and, for some s2 EiR , z(s2+e) > y(t1), 6 E [-1,0], z(s2+6) is non-

decreasing on [-1,0] (cf. Fig. 2). Now the application of Lemma 2.2

and the argument from the proof of Lemma 2.3 easily completes the proof

of the theorem.

Proof of Theorem 3. 3: Let g be an analytic function representing class

{2[1,51,4[3,51}. By Corollary 2.4, there exists an f E G2  representing

class (2(1,31,413,51}. Since the class {211,3],4(3,5]1 is --stable,

we infer from Lemma 2. 5 that there is an analytic function g E G2  repre-

senting {2[l,3],4[3,5]}. By Corollary 2.7, there is a continuous map

H: [0,1] - G2 such that H(O) , H(l) - g and H(s) is an analytic

function for every fixed s. Let al(s) < a2(s) < a3 (s) < a4 (s) < a5 (s)

be the zeros of H(t). It follows that ai(s) is continuous for

i - 1,...,5.

Let s0 = sup{s E [0,1]: the solution x(s',t), t E (- , ) of

(l.l)(b,H(s')) emanating from a2(') and staying to the right of a2

is such that limt_. x(s',t) - a3(8'), for every 0 < s' < s). It follows

easily that 0 < s0 < 1 and that limtx(s0,t) f {a 3(s0),a5(So0

Hence limt-Wx(sot) - a4(So), i.e., H(s0 ) represents the saddle connec-

tion {2[1,4],4[3,5]}. By using g' instead of g where g' is

analytic and represents class 12(1,31,4(1,5)), we analogously prove that

there is an analytic function E G 2 representing the saddle connection

{211,31,412,5]}. This completes the proof of Theorem 3.3.
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